.

GrowBit HR System

PERSONAL DEVELOPMENT PLAN Personal Development Plan (PDP)

Employee: Berik Bazarbayev

Position: DevOps Engineer

Introduction

This Personal Development Plan is designed to guide Berik's professional growth over the next 12 months,
aligning his individual goals with the needs of the team and the company. The plan considers his strong
practical skills in CI/CD, release security, and operational procedures, as well as identified gaps in his
fundamental theoretical knowledge of infrastructure and distributed systems.

Goal

The goal is to preserve and enhance his current strengths—a pragmatic approach to automation, backups,
and rollbacks, as well as a mature approach to monitoring and on-call—while closing critical gaps that
could affect the reliability and security of Fintech products. The plan combines technical training, practical
tasks, mentorship, and progress metrics to make the development concrete and measurable. Executing this
plan will help Berik increase his confidence in architectural decisions, mitigate security risks, and become
a more valuable team member and a potential future leader.

Key Development Goals

1.

Strengthen fundamental knowledge of distributed systems and infrastructure principles.
This is critical for making sound architectural decisions (CAP theorem, immutable
infrastructure) and reducing risks during service scaling.

Correct specific misunderstandings of Kubernetes (the role of kube-scheduler, Pod
scheduling, session affinity). Correct knowledge will enable more reliable orchestration design
and debugging.

Improve monitoring and metric practices (including p99 latency and the SLI/SLO approach).
This is important for objectively evaluating user latency and reducing incidents.

Enhance the security of secrets and access management (centralized storage, key rotation,
revocation). This is a necessary goal to comply with Fintech standards and reduce the risk of
leaks.

Consolidate and formalize strengths in CI/CD: automated security checks, rollbacks, and
release control. This will increase the speed and security of delivery.

Gain practical experience in incident response and on-call scenarios (roles, checklists,
communication). This will improve MTTR and the quality of postmortems.

Develop communication and documentation skills so that technical solutions are
understandable to the team and easily reproducible.

Prepare for a mentor/technical leader role at the team level: sharing knowledge on secure
release and monitoring practices.

Main Development Areas



1. Foundational Principles of Distributed Systems An understanding of the principles of distributed
systems (CAP theorem, consistency vs. availability, network partitions) is the foundation for designing
resilient services. Developing competence in this area will allow Berik to make informed trade-offs
when designing data and replication, avoiding incorrect analogies and errors that were identified in the
test. Skills will include reading architectural patterns, analyzing failure scenarios, and applying correct
replication and consistency strategies in a Fintech context. Mastering these concepts will reduce the
likelihood of design errors that require costly fixes in production. It will also strengthen his ability to
make architectural trade-offs and justify decisions to the team and management.

2. Kubernetes and Container Orchestration Precise knowledge of Kubernetes components (kube-
scheduler, kube-controller-manager, etc.), Pod scheduling models, and session affinity mechanics is
critical for correctly distributing loads and ensuring SLAs. Working on this area involves practical
exercises on tuning the scheduler, profiling Pods, testing affinity policies, and understanding the Pod
lifecycle. Competencies include writing manifests with clear anti-affinity rules, using node selectors,
taints/tolerations, and session affinity mechanisms. This will reduce the risks of incorrect load
distribution and unintended downtime during updates.

3. Observability and Metrics Shifting from "number of connections” to an SLI/SLO approach with
p50/p95/p99 latency metrics will provide an objective picture of user latency. Developing these
competencies includes choosing the right metrics for business-critical paths, setting up distributed
tracing, and creating functional dashboards and alerts that minimize false positives. Berik will learn how
to configure the export of latency metrics, build correct alerting rules, and analyze latency distributions.
This will improve the quality of incident investigations and allow a focus on problems that directly
affect users.

4. Secrets Security and Access Management The test revealed dangerous practices (suggesting to send
secrets via email) and incomplete approaches to key revocation/rotation. The goal here is to master
centralized secret stores (Vault, Secrets Manager) with rotation policies, limited privileges, and
automated distribution. It is important to implement secret-scanning practices in Cl and procedures for
rapid key revocation with a minimal blast radius. Competencies will include mastering infrastructure for
secret storage, integration with CI/CD, and planning secure procedures for restoring trust after leaks.

5. CI/CD, Secure Releases, and Rollback Practices Berik already demonstrates a pragmatic approach
to CI/CD: automated security checks and rollbacks. These practices need to be formalized and
expanded: implementing testing channels, canary releases, automated rollbacks based on metrics, and
ensuring SAST/DAST integration. Development in this area will enhance the ability to conduct fast and
secure releases, reduce the time spent on manual checks, and decrease the risk of regressions in
production.

6. Incident Response, On-Call, and Operational Discipline An understanding of the sequential steps
in a secret leak and recovery plans is a strong point that needs to be further developed into practical
scenarios. Skills will include developing playbooks, conducting incident drills, improving
communication in emergency cases, and fostering a postmortem culture. This will increase the team’s
response speed and reduce the number of repeated incidents.

12-Month Action Plan (6 phases, 2 months each)

Phase 1 (Months 1-2)



Task Description: Begin by aligning fundamental knowledge and correcting identified misconceptions.
The goal is to close the most critical conceptual gaps (CAP theorem, immutable infrastructure, the role
of kube-scheduler) and create a plan for practical exercises. Simultaneously, audit the current CI/CD
pipelines and secret management practices to establish a baseline for improvements. The focus is on
theory with short practical tasks to build a foundation for subsequent deep practices.

Detailed Actions:

o Study key concepts of distributed systems: read chapters/content on CAP, consistency, and
resilience ; complete short quizzes after each topic to solidify understanding. This will address
fundamental design errors.

e Go through a practical guide to the Kubernetes scheduler: reproduce Pod scheduling scenarios in
a test environment, change scheduler configurations, and observe behavior. This practice will
reinforce theory and eliminate incorrect assumptions.

e Conduct a mini-audit of CI/CD and secrets: list the tools and processes used, identify where
secrets are stored/transferred, and describe current risk points. This will provide a concrete list of
prioritized improvements.

Expected Outcome: By the end of this phase, Berik will be able to confidently explain key
distributed systems concepts and the role of basic Kubernetes components. A preliminary
checklist of problems in CI/CD and secret management will be created, with priorities for
correction. A plan for practical exercises and a list of metrics to start tracking in subsequent
phases will be established.

Additional Resources: Intensive reading and practical materials are recommended: the CAP
chapter from a book on distributed systems and the official Kubernetes scheduler documentation
for practice. Use online sandboxes (minikube/k3s) to reproduce scheduling scenarios. For the
CI/CD audit, export pipeline configurations and create a simple risk point table. Internal
meetings with a senior DevOps/architect to discuss identified gaps will help convert theory into
practice. Major articles/white papers on immutable infrastructure will help reinforce the stance
against manual edits. Small tests/quizzes after reading will solidify the material and reveal any
remaining gaps.

Phase 2 (Months 3-4)

Task Description: Focus on the practical mastery of Kubernetes and the implementation of correct
session affinity and load planning patterns. Simultaneously, begin implementing a basic secret
management system in a test environment. The goal is to turn knowledge into reproducible processes
and a minimally viable secure workflow for secrets and deployments.

Detailed Actions:

e Set up a test cluster and implement examples of affinity/anti-affinity, taints/tolerations, and node
selectors; document the results and risks of each approach. This will provide practical experience
in choosing a placement strategy.

o Implement a simple secret storage system in the test environment (e.g., HashiCorp Vault or
equivalent) and integrate it with CI for automated access without email distribution. This will
eliminate a basic vulnerability in current practices.



Conduct a peer review of configurations with a senior engineer and document the changes in the
internal wiki. Feedback will accelerate the correction of approaches and provide standardized
documentation.

Expected Outcome: By the end of this phase, there will be a working test cluster with correctly
configured placement patterns and detailed documentation on the strategies used. A basic secure
secret store and Cl integration for the test environment will be implemented. The most obvious
risks (e.g., sending secrets via email) will be eliminated.

Additional Resources: Practical guides to the Kubernetes scheduler and official Kubernetes
patterns; hands-on labs with k3s/minikube. Documentation and quick-start guides for HashiCorp
Vault or a cloud provider's secrets manager for quick integration. Internal paired sessions with a
senior DevOps engineer for reviews and discussion of trade-offs. Checklists for secret security
and standard operating procedures (SOP) for rolling back and updating secrets are
recommended. It is also recommended to keep a change log to track the results of experiments
and errors.

Phase 3 (Months 5-6)

Task Description: Deepen observability practices: implement the collection of latency metrics
(p50/p95/p99), tracing, and the creation of SLIs/SLOs for critical services. Concurrently, formalize
CI/CD practices: canary releases, automated rollbacks based on metrics, and SAST/DAST integration.
The goal is to make releases safe and measurable from a user experience perspective.

Detailed Actions:

Configure the collection of p99 latency for key HTTP/DB paths and add distributed tracing
(OpenTelemetry) to test services. Build dashboards and alerts based on p95/p99. This will
capture real user latency.

Implement a canary release in a test environment with automated metric analysis and rollback
rules in case of degradation. This will reduce the risk of widespread impact from problems.
Integrate SAST/DAST checks into Cl and establish policies for mandatory security checks
before merging. This will strengthen release security at an early stage.

Expected Outcome: By the end of this phase, working dashboards with p99 metrics will be
available, along with automated checks for releases and a canary release process with automatic
rollback rules. The release process will become safer and more manageable, with user latency
analytics as the basis for release decisions.

Additional Resources: Books and materials on observability: articles and practical guides on
OpenTelemetry, Prometheus, and Grafana ; examples of SLI/SLOs from SRE practices. Courses
on building distributed request tracing and hands-on labs. Documentation on canary releases and
feature flags (e.g., a library for feature flags). Regular code reviews for security checks and
external reviews of metric configurations are recommended.

Phase 4 (Months 7-8)

Task Description: Focus on practicing incident procedures: write playbooks for common incidents
(secret leak, latency degradation, scheduler malfunction), and conduct simulations and on-call drills.



Simultaneously, scale up secret management practices and automate key rotation. The goal is to reduce
MTTR and formalize communication during incidents.

Detailed Actions:

Develop a set of playbooks with clear steps for typical incidents, including communication
templates and steps for revoking/reissuing keys. This will ensure a quick and coordinated
response.

Conduct at least one incident simulation (game day) with a real on-call rotation and a subsequent
postmortem. The practice will reveal organizational gaps and provide experience in stressful
communication situations.

Implement automatic key/secret rotation for critical systems and test rollbacks without
downtime. This will reduce the blast radius in case of a compromise.

Expected Outcome: By the end of the phase, playbook templates will be ready, and at least one
incident simulation will have been conducted with documented conclusions. Key rotation will be
automated for critical components, and MTTR during simulations will decrease.

Additional Resources: Materials on incident management and postmortem culture (SRE
approaches). Practical cases on key revocation and rotation, communication checklists for
incidents. Internal training and retrospectives after game days. Tools for secret orchestration and
examples of CI/CD integration.

Phase 5 (Months 9-10)

Task Description: Strengthen leadership and communication skills through knowledge sharing: Berik
should conduct masterclasses on CI/CD security, monitoring, and secret management for the team.
Concurrently, he should participate in architectural discussions and propose well-reasoned trade-offs for
system design. The goal is to increase Berik's influence within the team and solidify his mentorship

skills.

Detailed Actions:

Prepare and conduct at least two internal workshops: one on secure CI/CD and rollback
practices, and a second on choosing the right metrics and interpreting p99. This will solidify his
knowledge and demonstrate critical expertise.

Take on the role of a technical owner for a small project or an observability improvement
initiative, managing documentation and architectural decisions. Leadership practice in small
projects is safe and effective.

Engage in paired programming/reviews with less experienced colleagues, focusing on security
and reliability. This will accelerate the team's growth and strengthen Berik's communication
skills.

Expected Outcome: By the end of the phase, Berik will have conducted training sessions that
raise the overall level of the team and will have established himself as a practical mentor. His
participation in architectural discussions will become noticeable, and his proposed solutions will
be based on measurements and practical experiments.

Additional Resources: Materials on effective presentation of technical topics, internal templates
for workshops, and preparation checklists. Books on DevOps/DevSecOps and SRE that can be
used as a basis for workshop content. Mentorship with a senior engineer for preparation and
feedback on training formats.



Phase 6 (Months 11-12)

Task Description: The final stage focuses on consolidating results: formalizing processes (SOPs), final
testing of real scenarios (a full-scale game day), and evaluating progress against KPIs. Prepare a final
report on the progress achieved and propose a roadmap for the next year. The goal is to obtain objective
evidence of improvements and define further steps.

Detailed Actions:

Conduct a major game day simulating a complex incident (e.g., a secret leak + latency
degradation) with a full cycle of response measures, including communication and investigation.
This will test the maturity of the processes.

Formalize a set of SOPs and internal policies for CI/CD, secrets, monitoring, and incidents,
approved by management. These documents will ensure the reproducibility of best practices.
Prepare a final self-assessment and presentation for the manager with progress metrics and
development proposals for the next year. This will create transparency and a foundation for
career development.

Expected Outcome: By the end of the 12th month, processes will be formalized, a major
incident simulation will have been completed with documented improvements, and a progress
report will be prepared. Metrics such as deployment frequency, change failure rate, MTTR, and
p99 latency for key paths will show improvement compared to the initial state. Berik will gain
recognition for strengthening operations and will be ready for the next career steps.

Additional Resources (General Recommendations)

Recommended books and materials that directly address the identified gaps and goals:

Designing Data-Intensive Applications (Martin Kleppmann) helps to understand CAP,
consistency, and data handling patterns in distributed systems.
Official Kubernetes documentation and the chapter on the scheduler (kubernetes.io) +

Kubernetes Up & Running for a practical understanding of component roles and Pod
scheduling.

Site Reliability Engineering (Google SRE) and articles on SLIs/SLOs for developing
observability and p99 metrics.

HashiCorp Vault docs / cloud provider secrets manager guides: practical guides for secure
storage and rotation of secrets.

The DevOps Handbook and materials on canary releases and feature flags for systematizing
CI/CD practices.

Practical labs on OpenTelemetry, Prometheus, and Grafana (online courses or internal
sandboxes) for practicing tracing and monitoring.

Internal mentorship and paired sessions with senior engineers, as well as participation in
code/infra reviews, are key practices for solidifying knowledge.

Each resource directly corresponds to the identified gaps and will help transform theory into
applicable commands and processes.



Measuring Progress
Progress will be evaluated by a combination of quantitative and qualitative methods:

« Monthly one-on-ones with the manager to discuss tasks, blockers, and goal achievement; these
meetings will provide regular course correction.

e Quarterly technical assessments: small practical tests/demonstrations (reproduction scenarios)
on topics like Kubernetes, distributed systems, and secrets. Specific tasks will show the level of
assimilation.

o 360-degree feedback from colleagues (peer reviews) after workshops and paired sessions to
evaluate communication and mentorship skills.

o Operational metrics: deployment frequency, change failure rate, MTTR, and p99 latency for
key paths. These KPIs will show the real impact of the improvements on the business.

o Results of incident simulations (game day) and subsequent postmortems: speed of playbook
execution, completeness of reports, and implementation of recommendations.

This multi-channel approach will allow for the assessment of both theoretical knowledge and the
ability to apply it in production conditions, which is critical for a DevOps role in Fintech.

Vision After 12 Months

In one year, Berik will become a confident operations engineer with a solid theoretical foundation in
distributed systems and practical skills confirmed by objective metrics. He will precisely understand the
role of the kube-scheduler and correctly apply Pod scheduling patterns, which will reduce orchestration
errors. His approach to observability will be based on SLI/SLO and p99 metrics, allowing for a more
accurate assessment of user latency and informed release decisions. The secret management system and
rotation procedures will be implemented and debugged, minimizing the risk of leaks and ensuring a
quick response. CI/CD pipelines will be formalized with canary releases and automated rollbacks, and
SAST/DAST integration will reduce the number of vulnerabilities before release. Berik will regularly
conduct internal training and participate in architectural discussions, acting as a mentor for junior
colleagues. The team will benefit from his improved on-call procedures and playbooks: MTTR will
decrease, postmortem quality will improve, and business trust will be enhanced. As a result, Berik will
become a key resource in the team, capable of taking on a wider range of technical and organizational
tasks.

Conclusion

Berik already possesses important practical skills: a pragmatic approach to CI/CD, good recovery
practices, and a mature view on monitoring and incident response. This PDP is aimed at converting
these strengths into formalized processes and closing the structural gaps identified in the testing. The
plan provides clear, measurable steps for each two-month cycle and includes technical training, practical
exercises, and mentorship. The company is ready to support Berik with resources, access to test
environments, and time to participate in workshops and simulations—investing in his development is an
investment in the reliability and security of Fintech products. The successful completion of this plan will
lead to an increase in Berik's professional confidence, a reduction in operational risks, and an increase in
his contribution to the team; management values him and expects progress.



